skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ham, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Creatinine measurement in blood and urine is an important diagnostic test for assessing kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network. Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle diameter of 3.4 ± 1.8 µm and 3.1 ± 1.9 µm for the non-imprinted and molecularly imprinted polymer, respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV− and NV0) was also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results show a 15% decrease of NV−/NV0 emission ratio for the creatinine-imprinted polymer compared to the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure of diamond with addition of creatinine. With further improvement of sensor design to better disperse nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to yield higher sensitivity with a longer range (Coulombic) interaction to imprinted sites than that for a sensor based on acceptor/donor resonance energy transfer. 
    more » « less
  2. Superhard boron-carbon materials are of prime interest due to their non-oxidizing properties at high temperatures compared to diamond-based materials and their non-reactivity with ferrous metals under extreme conditions. In this work, evolutionary algorithms combined with density functional theory have been utilized to predict stable structures and properties for the boron-carbon system, including the elusive superhard BC5 compound. We report on the microwave plasma chemical vapor deposition on a silicon substrate of a series of composite materials containing amorphous boron-doped graphitic carbon, boron-doped diamond, and a cubic hard-phase with a boron-content as high as 7.7 at%. The nanoindentation hardness of these composite materials can be tailored from 8 GPa to as high as 62 GPa depending on the growth conditions. These materials have been characterized by electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, and nanoindentation hardness, and the experimental results are compared with theoretical predictions. Our studies show that a significant amount of boron up to 7.7 at% can be accommodated in the cubic phase of diamond and its phonon modes and mechanical properties can be accurately modeled by theory. This cubic hard-phase can be incorporated into amorphous boron-carbon matrices to yield superhard materials with tunable hardness values. 
    more » « less